Answers>Maths>IB>Article

Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .

a)   f'(x)=uv'+vu'     if    f(x)= uv

u=2x  u'=2  v=sin(x)   v'=cos(x)

g'(x)=2x cos(x) +2sin(x)

b)   g'(π) = 2π cos(π)+2sin(π)  = 2 π (-1) + 2 (0)

      g'(π) = -2π

MB
Answered by Matias B. Maths tutor

10481 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

log8(5) = b. Express log4(10) in terms of b


The function f has a local extreme at point (1,4). If f''(x)=3x^2+2x, then find f(0)?


Find out the stationary points of the function f(x)=x^2*e^(-2x)


Take the square root of 2i


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning