Answers>Maths>IB>Article

Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .

a)   f'(x)=uv'+vu'     if    f(x)= uv

u=2x  u'=2  v=sin(x)   v'=cos(x)

g'(x)=2x cos(x) +2sin(x)

b)   g'(π) = 2π cos(π)+2sin(π)  = 2 π (-1) + 2 (0)

      g'(π) = -2π

MB
Answered by Matias B. Maths tutor

10088 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Given 2x^2-3y^2=2, find the two values of dy/dx when x=5.


What does it take to make a 7 in HL Math?


Solve equation 5^(2*x) = 5^(x)+5


When integrating by parts, how do I decide which part of the integrand is u or f(x) and which dv or g'(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences