Answers>Maths>IB>Article

Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .

a)   f'(x)=uv'+vu'     if    f(x)= uv

u=2x  u'=2  v=sin(x)   v'=cos(x)

g'(x)=2x cos(x) +2sin(x)

b)   g'(π) = 2π cos(π)+2sin(π)  = 2 π (-1) + 2 (0)

      g'(π) = -2π

MB
Answered by Matias B. Maths tutor

10486 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find an antiderivative to the function f(x) = e^x cos(x)


Let f(x)= x^2+4, and g(x)= 3x; Find g(f(1))


How do you integrate xln(x) between the limits of 0 and 2?


How do I derive the indefinite integral of sine?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning