Consider the Matrix M (below). Find the determiannt of the matrix M by using; (a) cofactor expansion along the first row, (b) cofactor expansion along the second column

Matrix M is

-2 1 -4

1 -1  5

3  0  2

Let A be a square nxn matrix. Then, for each entry Aij (where 1 </= i < n, 1 </= j < n), the minor of Aij is A(^i;^j), the determinant of the (n - 1) (n - 1) matrix A(^i;^j). Then the cofactor of Aij is the minor of Aij multiplied by (-1)^(i+j) , i.e. multiplied by +1 if the sum of the row and column we are considering is even and by -1 if this sum is odd.

Of which the formula is n(Sigma)i=1 (-1)^(i+j)| A(^i;^j)|

a) Using cofactor expansion along the first row we have that the determinant of the matrix M is

(-2) |-1(2)+ 5(0)| + (-1) |1(2) + (3)(5)| +(-4)|1(0) + (3)(-1)|

(-2)(-2) - (1)(-13) + (-4)(3)

= 5

b) Using cofactor expansion along the second row we have that the determinant of the matrix M is

-(1) |1(2)+ 5(3)| + (-1) |(-2)(2) + (-4)(3)| -(0)|(-2)(5) + (1)(-4)|

-(1)(-13) + (-1)(-8) - (0)(6)

= 5

ET
Answered by Evi T. Further Mathematics tutor

2921 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


If y=(x^2)*(x-10), work out dy/dx


Given f(x)= 8 − x^2, solve f(3x) = -28


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences