Solve x^3=1 giving all the roots between -pi<=theta<=pi in exponential form

 x^3=1=e^2(pi)i

x=e^2(pi)ik/3

The three roots are

k=0    x=1 

k=1    x=e^2(pi)*i/3

k=-1   x=e^-2(pi)ik/3

AA
Answered by Anmol A. Further Mathematics tutor

2329 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I express complex numbers in the form reiθ?


How do you find the matrix corresponding to a transformation?


Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2


A=[5k,3k-1;-3,k+1] where k is a real constant. Given that A is singular, find all the possible values of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences