Prove that (AB)^-1 = B^-1 A^-1

This problem can be solved in 8 steps:

1. Let AB = C

2. A-1AB = A-1C

3. IB = A-1C as the identity matrix I = A-1A

4. B-1B = B-1A-1C premultiply both sides by B-1

5. I = B-1A-1C as B-1B = I, the identity matrix

6. C-1=B-1A-1CC-1 post multiple both sides by C-1

7. C-1=B-1A-1 as CC-1 = I, the identity matrix

8. (AB)-1=B-1A-1

KH
Answered by Katie H. Further Mathematics tutor

121719 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of the differential equation d^2y/dx^2 - 2(dy/dx) = 26sin(3x)


By Differentiating from first principles, find the gradient of the curve f(x) = x^2 at the point where x = 2


A curve has the equation (5-4x)/(1+x)


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning