An engineering student found that the Youngs modulus of an alloy was 2.8 x 10^11 Pa. The 1.5m wire of the allow increased in length by 0.24% during an experiment. Calculate the stress on the wire.

The Youngs modulus of a material is = Stress / Strain. Therefore, the stress of an object is the strain multiplied by the Youngs modulus. We know that strain is the change in length (or extension) divided by the original length.  Which in this case, is  (1.5 * 1.0024 )m  /  1.5m - notice the units cancel. Multiplying this by 2.8x 10^11Pa (YM) will give us a stress of 6.7 x 10^8 Pa. Notes: 0.0024 is 0.24% written as a decimal, so an increase in 0.24% is 1.0024 multiplied by the original length.

DT
Answered by David T. Physics tutor

3316 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If a ball is launched at ground level at a velocity v and angle θ, find an expression for it's height at horizontal distance x.


Why is potential energy negative? What does that even mean?


A mass, m, is resting on a slope being slowly tilted upwards from horizontal. The static friction co-efficient is 0.3 and the dynamic friction co-efficient is 0.2: at what angle will the mass begin to slip?


From the definition of the decay constant for nuclear decay, derive the exponential decay equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences