An engineering student found that the Youngs modulus of an alloy was 2.8 x 10^11 Pa. The 1.5m wire of the allow increased in length by 0.24% during an experiment. Calculate the stress on the wire.

The Youngs modulus of a material is = Stress / Strain. Therefore, the stress of an object is the strain multiplied by the Youngs modulus. We know that strain is the change in length (or extension) divided by the original length.  Which in this case, is  (1.5 * 1.0024 )m  /  1.5m - notice the units cancel. Multiplying this by 2.8x 10^11Pa (YM) will give us a stress of 6.7 x 10^8 Pa. Notes: 0.0024 is 0.24% written as a decimal, so an increase in 0.24% is 1.0024 multiplied by the original length.

DT
Answered by David T. Physics tutor

3865 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A bungee jumper of mass 160kg falls from a cliff. The bungee cord has a natural length of 5.0m and a stiffness constant of 3.0N/m. The air resistance is a constant force of 4.0N, what's the speed of the jumper when the total length of cord is 5.9m?


A ball is thrown vertically downwards at a speed of 10ms^-1 from a height of 10m. Upon hitting the floor 10% of the energy is dissipated through waste heat. What is the heighest point the ball reaches before it comes to rest? Take g=10ms^-2


How do I derive equations for Time of Flight and Range in Parabolic Motion?


What is the difference between internal energy, temperature, and heat?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning