Find the general solution of the second order differential equation: y''+2y'-3 = 0

This is a homogeneous second order equation with constant coefficients, so all we need to do is find the complementary function: We write: m2+2m-3=0 which has solutions m=1 or m=-3 We have two real solutions, so we get two exponential terms in the general solution: ex and e-3x This gives the general solution (putting in arbitrary constants): y = Aex+Be-3x

MD
Answered by Matthew D. Further Mathematics tutor

5699 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What are the conditions required for the poisson distribution?


Find the derivative of the arctangent of x function


Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning