Find the general solution of the second order differential equation: y''+2y'-3 = 0

This is a homogeneous second order equation with constant coefficients, so all we need to do is find the complementary function: We write: m2+2m-3=0 which has solutions m=1 or m=-3 We have two real solutions, so we get two exponential terms in the general solution: ex and e-3x This gives the general solution (putting in arbitrary constants): y = Aex+Be-3x

MD
Answered by Matthew D. Further Mathematics tutor

5408 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


How do I integrate arctan(x) using integration by parts?


Explain why the equation tanx + cotx = 1 does not have real solutions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning