Find the general solution of the second order differential equation: y''+2y'-3 = 0

This is a homogeneous second order equation with constant coefficients, so all we need to do is find the complementary function: We write: m2+2m-3=0 which has solutions m=1 or m=-3 We have two real solutions, so we get two exponential terms in the general solution: ex and e-3x This gives the general solution (putting in arbitrary constants): y = Aex+Be-3x

MD
Answered by Matthew D. Further Mathematics tutor

5060 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to y''+2y'-3y=x


How do you prove the formula for the sum of n terms of an arithmetic progression?


Evaluate (1 + i)^12


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences