The point p lies on the curve with eqn x = (4y - sin(2y)^2, given that p has coordinates (p,π/2), p is a constant, a) find the exact value of p; the tangent to the curve at P cuts the y-axis at A, b) use calculus to find the coordinates of A.

a) Sub y= π/2 into equation, hence x coordinate is 4π^2 b) to find equation of the tangent, differentiate the equation using the chain rule (wrt y) and then substitute the coordinates of p into the differentiated equation. Then use dy/dx = 1/(dx/dy) x = (4y - sin(2y)^2  dx/dy = (4y - sin(2y)2(4 - 2cos(2y)) dx/dy(4π^2,π/2) = 24π ; hence dy/dx = 1/24π This is now the gradient of the tangent. Using y =mx +c (used for linear equations), where m is the gradient, x and y are coordinates of a point and c is the y intercept. Substitute values we have into this, then rearrange and we have that c = π/3, which is the y intercept; coordinates of A = (0, π/3)

MO
Answered by Mar O. Maths tutor

9218 Views

See similar Maths 11 Plus tutors

Related Maths 11 Plus answers

All answers ▸

Jim weighs 74.2kg, Connie weighs 67.8kg and Jane weighs 69.4kg. What is the range in their weights?


How many thirds are there in 9?


Write 40 as product of prime factors


When a fifth of the class is absent, there are 24 pupils present. What is the total number of pupils in the class?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning