The point p lies on the curve with eqn x = (4y - sin(2y)^2, given that p has coordinates (p,π/2), p is a constant, a) find the exact value of p; the tangent to the curve at P cuts the y-axis at A, b) use calculus to find the coordinates of A.

a) Sub y= π/2 into equation, hence x coordinate is 4π^2 b) to find equation of the tangent, differentiate the equation using the chain rule (wrt y) and then substitute the coordinates of p into the differentiated equation. Then use dy/dx = 1/(dx/dy) x = (4y - sin(2y)^2  dx/dy = (4y - sin(2y)2(4 - 2cos(2y)) dx/dy(4π^2,π/2) = 24π ; hence dy/dx = 1/24π This is now the gradient of the tangent. Using y =mx +c (used for linear equations), where m is the gradient, x and y are coordinates of a point and c is the y intercept. Substitute values we have into this, then rearrange and we have that c = π/3, which is the y intercept; coordinates of A = (0, π/3)

MO
Answered by Mar O. Maths tutor

8635 Views

See similar Maths 11 Plus tutors

Related Maths 11 Plus answers

All answers ▸

Annie, Brandon and Clara are buying pencils. Annie needs 5, Brandon needs 8 and Clara needs 13. Pencils only come in packs of 10. How many packs of pencils do they need to buy between them?


How do you find the prime factorisation of a large number like 420?


It takes 9 minutes to paint 1 m^2 of wood. How long would it take to paint a wooden cube with sides of 2m?


How do I work out the area of a rectangle


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning