Using the kinetic molecular theory,explain why air pressure inside a syringe increases if the volume decreases from 15.0 cm

In order to tackle this question a general understanding of the the Kinetic Molecular Theory is required. The theory is based on assumptions of the behaviour of Ideal gases which are: Ideal gases are made up of very small molecules which ideally have no mass and there is no force of attraction between the molecules or between molecules and the walls of the container.The molecules are always in constant random motion and they move in a straight line until they collide with another molecule or the walls of the container.Collisions between the molecules or with the walls of the container are perfectly elastic. This means that a molecule does not lose any kinetic energy during colliosion.

By decreasing the volume, the molecules move from one end of the syringe to the other in a shorter period of time. This means that they hit the walls more frequently causing more force which must lead to an increase in the pressure of the gas. Thus, the pressure of a gas increases as the volume decreases. This is essentially based on Boyle's Law given that the temeparture is constant.

ES
Answered by Emma S. Physics tutor

18843 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A man decides to shoot a rifle whilst on a wheelchair. Explain in terms of conservation of momentum what happens to the man as the shot is fired.


On a pirate ship, a 1.6m plank is held at one end to the ship. A 65kg pirate walks the plank with his 1.1kg parrot following 40cm behind him. What is the total clockwise moment acting on the plank when the pirate reaches the end of it?


Why do we use non-renewable energy?


How do Transformers work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences