Using the kinetic molecular theory,explain why air pressure inside a syringe increases if the volume decreases from 15.0 cm

In order to tackle this question a general understanding of the the Kinetic Molecular Theory is required. The theory is based on assumptions of the behaviour of Ideal gases which are: Ideal gases are made up of very small molecules which ideally have no mass and there is no force of attraction between the molecules or between molecules and the walls of the container.The molecules are always in constant random motion and they move in a straight line until they collide with another molecule or the walls of the container.Collisions between the molecules or with the walls of the container are perfectly elastic. This means that a molecule does not lose any kinetic energy during colliosion.

By decreasing the volume, the molecules move from one end of the syringe to the other in a shorter period of time. This means that they hit the walls more frequently causing more force which must lead to an increase in the pressure of the gas. Thus, the pressure of a gas increases as the volume decreases. This is essentially based on Boyle's Law given that the temeparture is constant.

ES
Answered by Emma S. Physics tutor

21344 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A car accelerates (at a constant acceleration) from a velocity of 25m/s to 34m/s in 6s. Calculate the cars acceleration.


A sound wave has a frequency of 500 Hz. The sound wave has a wavelength of 0.34 m in air. Calculate the speed of the sound wave in air?


Why is the sky blue?


Find the period of a wave given that it has a speed of 200m/s and a wavelength of 2m


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning