what would be the mass required to keep an object with a mass of 250kg orbiting at a constant distance of 100km with a linear velocity of 100m/s?

the linear speed of an orbiting body is given by the equation sqrt(GM/2r) where M is the mass of the attracting body, G is the gravitational constant and r is the distance between the two bodies' centres of mass. The mass of the orbiting body is irrelevant yet is sometimes put into questions as red herrings to truly test the knowledge of students. To solve this all we need to do is rearrange the equation to give us M = 2v2r/G

We know all of the numbers on one side of the equation so all we have to do is plug in the numbers, v = 100m/s r = 100,000m                                G = 6.67x10-11 Nm2kg-2 . so after plugging all of the numbers into the equation we get that the mass required to keep an object orbiting at 100km at 100m/s is 3.0x1019kg or roughly 0.0005 x the mass of the earth 

MA
Answered by Michael A. Physics tutor

2072 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A child is standing on a walkway that is moving at 2 metres per second and decides to turn around and walk back to the start at 2 metres per second. Explain why the child cannot reach the start of the walkway at this speed.


Explain in terms of the motion of the molecules of the gas why the volume of gas must increase if the pressure is to remain constant as the gas is heated.


Derive the Drift Velocity Equation


You are sitting in a boat on a lake, you have with you in the boat a large rock. You throw the rock out of the boat and it sinks to the bottom of the lake, does the water level of the lake go up, down or stay the same?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning