Explain how and why the diffraction pattern of electrons passing through a slit depends on their momentum.

To understand this question, we have to consider the wave-particle duality of electrons. When passing through a slit, electrons exhibit a wavelike property- they diffract or spread out like a wave passing through a narrow gap. The De Broglie wavelength tells us about the wave-particle relationship:

λ = h/mv

where λ is the wavelength, h is planks constant, m is the mass and v is velocity. As momentum p = mv, a smaller momentum will result in a longer wavelength. The diffraction or spread of a wave passing through a slit depends on the wavelength- the longer the wavelength, the more the light spreads out. Finally, we can consider (through a diagram) that more spread out waves will have a more dispersed diffraction pattern. Therefore, electrons with smaller momentum will produce a more diffuse diffraction pattern.

TF
Answered by Thomas F. Physics tutor

13762 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A fluorescent light uses a lining to emit visible light, explain why this is necessary and how it works.


A trolley of mass 0.75kg is running along a frictionless track at a constant speed of 0.7ms-1, as the trolley passes below a mass of 0.5kg the mass drops a short vertical distance onto the trolley. Calculate the new velocity of the trolley and mass.


find and symplify the following. Integrate ( 2x^5 - 1/(4x^3)- 5 )dx


The radius of the Earth is 6,400km and has a mass of 6x10^24kg. Calculate the minimum velocity needed by a projectile, fired from the surface of the Earth in order to escape the Earths gravity.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning