Explain how and why the diffraction pattern of electrons passing through a slit depends on their momentum.

To understand this question, we have to consider the wave-particle duality of electrons. When passing through a slit, electrons exhibit a wavelike property- they diffract or spread out like a wave passing through a narrow gap. The De Broglie wavelength tells us about the wave-particle relationship:

λ = h/mv

where λ is the wavelength, h is planks constant, m is the mass and v is velocity. As momentum p = mv, a smaller momentum will result in a longer wavelength. The diffraction or spread of a wave passing through a slit depends on the wavelength- the longer the wavelength, the more the light spreads out. Finally, we can consider (through a diagram) that more spread out waves will have a more dispersed diffraction pattern. Therefore, electrons with smaller momentum will produce a more diffuse diffraction pattern.

TF
Answered by Thomas F. Physics tutor

13496 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What do you understand by simple harmonic motion?


A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?


What is an inertial frame of reference?


What Newton’s third law of motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning