A stationary particle explodes into 3: A (to the left), B and C (both to the right). B has mass m and speed 3v. C has mass 2m and speed v. A has speed 2v. What is the mass of A in terms of m?

The key to solving this is remembering that momentum is conserved. The large, initial particle has no speed so its momentum is zero. Therefore, if we add together the momenta of the final particles we also get zero. So we can write:

pA + p+ p= 0

And we can rearrange for pA, which is what we want to find:

pA = -pB - pC

We know that momentum is calculated p = mv and we are given the masses and velocities of B and C, and the velocity of A (we remember that A is travelling in the opposite direction so has a negative v):

M* (-2v) = -3mv - 2mv

We rearrange for the mass of A, MA, and find that:

MA = 2.5 m

SP
Answered by Seth P. Physics tutor

2223 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball of mass 0.7 kg strikes the wall at an angle of 90 degrees with speed 72 km/h. Consider that the bounce lasts for 0.1 s and is perfectly elastic. What is the magnitude of the average reaction force from the wall that acts on the ball?


Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?


Derive the kinetic theory equation pV=Nm/3(crms2) for an ideal gas.


Why does an electric drill heat up when passing through metal compared to in thin air?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning