Why is 0°C ice more effective at cooling a drink than 0°C water of the same mass?

When ice (or ice cold water) is added to a drink, the two substances move towards thermal equilibrium (the point where there is no net energy transfer between the two substances, and they have the same temperature). For this to happen, the ice must warm up, and the drink must cool down. Remember that temperature is a "measure of the average kinetic energy of the particles in a substance"... but kinetic energy is not always the only form of energy present in a substance! Ice cold water, in liquid form, contains latent energy (the energy that was required by the ice to change state into water), so already has more energy than the same amount of ice at the same temperature. Therefore, ice cold water is not as good at cooling a drink as solid ice is, because ice starts with less internal energy, so the point of thermal equilibrium is reached more quickly and to a colder temperature.

LW
Answered by Lily W. Physics tutor

19293 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


A coil is connected to an analogue centre zero ammeter. A magnet is dropped (North pole first) so that it falls vertically and completely through the coil. What would be observe on the ammeter?


How to solve horizontally-launched projectile motion problems using equations of motion?


Why are values for gravitational potential always negative?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning