Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.

Answer: 1.96108ms-1.Snell's law tells us that n1sin(x1)= n2 sin(x2) where x is the angle of a light ray from the normal. Air can be assumed to have a refractive index of 1. Therefore, sin(x1) = n2 sin(x2). This means that the refractive index of glass can be found to be sin(x1)/sin(x2). The refractive index of a substance is given as the speed of light in a vacuum divided by the speed of light whilst travelling through the substance. Substituting n2 to be c/v gives c/v = sin(x1)/sin(x2). The speed of light in glass can be found by rearranging this equation so that velocity is the subject of the equation. This gives v= c sin(x2)/sin(x1). Putting in the values for the two angles gives that the speed of light in glass is equal to c* sin(30)/sin(50) which is equal to 1.96*108ms-1.

CH
Answered by Charlie H. Physics tutor

2758 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the difference between internal energy, temperature, and heat?


Two current carrying wires are placed next to each other and anti-parallel currents are allowed to flow. Is the magnetic force between the wires attractive or repulsive?


A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:


An electrical heater supplies 500J of heat energy to a copper cylinder of mass 32.4g Find the increase in temperature of the cylinder. (Specific heat capacity of copper = 385 J*kg^-1*Celsius^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences