Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x

Solve complimentary function: Let y = emx then,
d2y/dx2 - 5dy/dx + 4y = 0
m2emx - 5memx + 4emx = 0 (substituting for y)
emx(m2 - 5m + 4) = 0
emx(m - 4)(m - 1) = 0
Therefore m=4 and m=1, so the c.f. is y = Ae4x + Bex where A,B are constants

Solve particular integral: Let y = ax + b and substitute into the differential equation
0 - 5a + 4(ax + b) = 2x
4ax + (4b - 5a) = 2x
Therefore 4a=2 and 4b-5a=0 so a=1/2, b =5/8

Hence the general solution is y = c.f + p.i =  Ae4x + Bex + 1/2 x + 5/8

PM
Answered by Peter M. Further Mathematics tutor

12957 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I determine whether a system of 3 linear equations is consistent or not?


Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


Find the shortest distance between the lines r = (1, 5, 6) + y(-2, -1, 0) and r = (1, 7, -3) + z(2, 0, 4)


Given a curve with parametric equations, x=acos^3(t) and y=asin^3(t), find the length of the curve between points A and B, where t=0 and t=2pi respectively.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning