Answers>Maths>IB>Article

How do I find the derivative of 2^x?

To find the derivative of any number to the power "x", such as 2x, 5x, or even 4.13x, we first consider the general form ax. We need to be a little creative here. We know that any variable y can be rewritten as elny.  If we then say that y = ax then we can say that y= elnax. Note that this is because ln(a)x=xlna. So that means y = ax = elna * x. Now we want to find the derivative of ax, or (elna * x )', which is lna ex(lna). This is because lna is a definite number, and so we derivate this the same way we would e3x (which would be 3e3x). Now, if the derivative equals lna ex(lna) we see that actually, ex(lna) is equal to y, so we can rewrite this further as lnay. Since y = ax we can simplify this finally to lnaax. That means that the derivative of ax is axlna. This is the general form and should be remembered. So, (2x)'= 2xln2. 

KS
Answered by Katerina S. Maths tutor

40559 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Prove 2^(n+2) + 3^(2n+1) is a multiple of 7 for all positive integers of n by mathematical induction.


Three girls and four boys are seated randomly on a straight bench. Find the probability that the girls sit together and the boys sit together.


Solve the equation sec^2 x + 2tanx = 0 , 0 ≤ x ≤ 2π, question from HL Maths exam May 2017 TZ1 P1


What is the most difficult topic in HL Maths?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning