How do I calculate the 100th term of the sequence 15, 8, 1, -6...

A sequence means a pattern, so the first thing to do is find the pattern. First try seeing what the difference between the numbers is. 15-7=8, 8-7=1, 1-7=6, so the pattern must be to subtract 7 each time. The first term of the sequence is 15, so let's call that term u1. The next term, u2, is u1-7. The next term, u3, is u2-7 or (u1-7)-7. Let's continue even further, u4=u3-7 or (u1-7-7)-7. Noticing a pattern? u4 is actually u1 minus 3*7. Since 3=4-1, we can see that for u6, we could express it as u1-(6-1)7, or u1-57. So we can formulate the general rule un= u1- (n-1)7, where "n" is any number we choose. This question is asking us to find the 100th term. For the 100th term, n=100. So what is u100? It's u100=u1- (100-1)7, or u100=u1- (997). Since we know u1=15, since this is the first term, and 997= 693, we know that u100= 15-693= -678. 

KS
Answered by Katerina S. Maths tutor

10439 Views

See similar Maths 13 Plus tutors

Related Maths 13 Plus answers

All answers ▸

Make a the subject of: (a+3)=(2a+7)/r


Mike paid a total of £4.69 for a chocolate bar, a bag of crisps and a jar of jam. The jar of jam costs £2.19. The chocolate bar costs 57 pence. How much did the bag of crisps cost?


Josh travels 30 km in 30 hours. At what speed is he going?


Write each of the following numbers to 2 decimal places: 65.4632, 9.8971.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences