How come nuclei become more unstable the bigger they are?

The nucleus is made up of protons and nuetrons, which means there is an electric repulsion. The nucleus is held together by somethign called the strong nuclear force. This overrides the electromagnetic repulsion of the protons in the nucleus. However, the strong force only occurs at very small distances, so as the radius of the nucleus increases the electromagnetic force becomes greater and causes this instability.

Here I'd draw a graph with curves for the strong nuclear force and the electromagnetic force, with the positive side of the y axis showing repulsion and the negative showing attraction and then distance between protons as they x axis. The student should of seen this before, but I would point out where the point of equilibrium is and talk about the rates of increase and decrease in the gradient

So as the nucleus gets bigger the electrostatic force between protons that are further away will become greater than the strong force. This can cause alpha or beta decay, with alpha decay reducing the size of the nucleus (with two protons and two nuetrons being emitted) and beta decay changing the balance of the nucleus where a proton may turn into a nuetron (beta positive) or a nuetron may turn into a proton (beta minus decay).

TR
Answered by Thomas R. Physics tutor

2686 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cyclist rides 10km. In the first 5km, they climb a hill, averaging 10km/h. In the second 5km, they descend the hill, averaging 30km/h. What is their average speed over the full 10km?


Describe and explain the photoelectric effect in terms of photons interacting with the surface of a metal.


Show that the orbital period of a satellite is given by T^2=(4pi^2r^3)/(GM) where r is the orbital radius, G is the gravitational constant and M is the mass of the Earth. Then find the orbital radius of a geostationary satellite.


A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning