A rocket travels at 500m/s two minutes after its take-off. If it was initially stationary, calculate its acceleration. If the rocket has a mass of 1800kg, what force is required to give it an acceleration of 2m/s^2?

a) Acceleration is the rate of change of velocity of an object

In this case, the equation that we will use to calculate it is 

a = (v - u )/ t

where v is the rocket's final speed, u is its initial speed, and t is the time taken

Note: units of measurement 

a: measured in m/s^2

v/u: measured in m/s

t: measured in s

Putting the given values into this equation, we find that 

acceleration = (500 - 0)m/s / (2x60)s = 4.17 m/s^2 (2dp)

- Hints: the initial speed of the rocket was 0 m/s at it was stationary to begin with, and we multiply 2 by sixty as we must convert time values from minutes into seconds. 

- I have included units in the calculation above- you dont need to do this at every stage of calculation but make sure you include units when giving a final answer!

b)  We can work out the second part of this question using Newtons's second law of motion F = m x a 

 F = 1800 x 2   = 3600 N ( or 3600 kgm/s^2) 

This law explains that the force (F) acting on an object is equal to the mass (m) of an object times its acceleration (a)

DS
Answered by Dhrushee S. Physics tutor

4539 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A Car of mass 1000kg applies a constant 200N breaking force over a distance of 30m and comes to a complete stop. How fast was the car going the instant the brakes were engaged.


Describe (both quanititavely and qualitiatively) the energy changes of a ball of mass 0.5kg, dropped from a height of 10m and left to bounce. Make use of the law of conservation of energy.


When is a system in equilibrium?


A typical question is about energy transfer - Explain the process of convection and give an example of where we can find them


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences