A rocket travels at 500m/s two minutes after its take-off. If it was initially stationary, calculate its acceleration. If the rocket has a mass of 1800kg, what force is required to give it an acceleration of 2m/s^2?

a) Acceleration is the rate of change of velocity of an object

In this case, the equation that we will use to calculate it is 

a = (v - u )/ t

where v is the rocket's final speed, u is its initial speed, and t is the time taken

Note: units of measurement 

a: measured in m/s^2

v/u: measured in m/s

t: measured in s

Putting the given values into this equation, we find that 

acceleration = (500 - 0)m/s / (2x60)s = 4.17 m/s^2 (2dp)

- Hints: the initial speed of the rocket was 0 m/s at it was stationary to begin with, and we multiply 2 by sixty as we must convert time values from minutes into seconds. 

- I have included units in the calculation above- you dont need to do this at every stage of calculation but make sure you include units when giving a final answer!

b)  We can work out the second part of this question using Newtons's second law of motion F = m x a 

 F = 1800 x 2   = 3600 N ( or 3600 kgm/s^2) 

This law explains that the force (F) acting on an object is equal to the mass (m) of an object times its acceleration (a)

DS
Answered by Dhrushee S. Physics tutor

4721 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A bomb of mass 34kg, at rest is detonated. The explosion splits the bomb into two pieces, one of mass 13kg, which is thrown to the left at a velocity of 28 m/s. What is the velocity of the second piece?


What is the difference between acceleration, speed and velocity?


A 950 kg car accelerates from 0 to 33 m/s in 11 seconds. a) Calculate the acceleration of the car b) Calculate the force needed to produce this acceleration c) The car claims a top speed of 110 miles/hr. Explain why there must be a top speed for any car


The cyclist used the brakes to slow down and stop the bicycle. A constant braking force of 140 N stopped the bicycle in a distance of 24 m. Calculate the work done by the braking force to stop the bicycle. Give the unit. (3 Marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences