Answers>Maths>IB>Article

Determine the coefficient of y^3 in the binomial expansion (2x-3y)^4

Using the method of binomial expansion (which I will cover in more detail) we get

(2x-3y)^4 = + 1(2x)^4(3y)^0  -  4(2x)^3(3y)^1  +  6(2x)^2(3y)^2  -  4(2x)^1(3y)^3  +  1(2x)^0(3y)^4  =

= 16x^4  -  96x^3 y  +  216x^2 y^2  -  216x y^3  +  81y^4

Note that we can get the coefficients 1, 4, 6, 4, 1  from Pascal's triangle, and since in the given example there is subtraction (2x-3y), there is a minus sign before each term that has 3y in an odd factor (^1, ^3 etc). You can simply remember to add a minus sign before every second term.

Now we see that in the term where y is in factor 3 as asked in the question (this is the term -216xy^3), the coefficient is -216. This is the answer we are looking for!

DM
Answered by Davids M. Maths tutor

11340 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The quadratic equation 2x^2-8x+1 = 0 has roots a and b. Find the value of a + b and ab


How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


How do you integrate xln(x) between the limits of 0 and 2?


When do you use 'n choose k' and where does the formula come from?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning