Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)

tanh(x) = ((ex-e-x)/2)/((ex+e-x)/2) 1 - tanh2(x) = 1-((ex-e-x)/(ex+e-x))2  = ((e2x+e-2x+2)-(e2x+e-2x-2))/(ex+e-x)2 = (2ex.2e-x)/(ex+e-x)2 = 4/(ex+e-x)2 = sech2x

CB
Answered by Chris B. Further Mathematics tutor

5820 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove ∑r^3 = 1/4 n^2(n+1)^2


Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?


Could you explain to me how proof by induction works?


Whats the derivative of sin(3x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning