Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)

tanh(x) = ((ex-e-x)/2)/((ex+e-x)/2) 1 - tanh2(x) = 1-((ex-e-x)/(ex+e-x))2  = ((e2x+e-2x+2)-(e2x+e-2x-2))/(ex+e-x)2 = (2ex.2e-x)/(ex+e-x)2 = 4/(ex+e-x)2 = sech2x

CB
Answered by Chris B. Further Mathematics tutor

6303 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Differentiate artanh(x) with respect to x


How do I find the inverse of a 3x3 matrix?


Prove by induction the sum of n consecutive positive integers is of the form n(n+1)/2.


In statistics, what is the benefit of taking a sample survey rather than a census?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning