Can you express 3 + 4j in polar form?

First, let's imagine the point 3 + 4j as a point on an Argand diagram, with coordinates 3,4. The polar form of an imaginary number is in the form re^(jθ), where r is the modulus of the number (the distance between the point on the graph and the origin), and θ is the argument (the angle the point makes with the horizontal). In order to find r, we can simply use Pythagoras' Theorem, giving us the answer r = 5. To find θ, we must use trigonometry, identifying the angle θ as the inverse tangent of (4/3), which is equal to 0.927. Therefore the angle θ is 0.927. This means the polar form of 3 + 4j is 5e^0.927jθ

WT
Answered by Walter T. Further Mathematics tutor

16497 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of the differential equation d^2y/dx^2 - 2(dy/dx) = 26sin(3x)


Integrate x^2sin(x) between -pi and pi


f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.


You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning