Answers>Maths>IB>Article

Find a and b (both real) when (a+b*i)^2=i.

Every complex number has a real and imaginary part. For the complex number z=a+bi the notation for real and imaginary parts respectively are Re(z)=a and Im(z)=b. If you know this, many complex algebra equations will become much simpler to solve.

In this specific case, firstly consider LHS, giving z=a2+ 2abi+(ib)2=(a2-b2)+(2ab)*i. (since i2=-1). Consequently, Re(z)=a2-b2 and Im(z)=2ab. Next consider the RHS, write its real and imaginary parts: Re(i)=0 and Im(i)=1. Equate LHS and RHS, getting a system of equations:  a2-b2=0 and 2ab=1.
The solutions are a=-1/sq(2), b=1/sq(2) and a=1/sq(2), b=-1/sq(2).

UA
Answered by Urte A. Maths tutor

1766 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.


Find the Cartesian equation of plane Π containing the points A(6 , 2 , 1) and B(3, -1, 1) and perpendicular to the plane Π2 (x + 2y - z - 6 = 0).


The sixth term of an arithmetic sequence is 8 and the sum of the first 15 terms is 60. Find the common difference and list the first three terms.


What is integration by parts, and how is it useful?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning