Explain how the electron pair repulsion theory can be used to deduce the shape of, and the bond angle in, PF3

Phosphorous has five electrons in its outermost shell of electrons. Fluorine provides three electrons to the phosphorous allowing the formation of a stable central phosphorous atom which now has 8 electrons and 3 fluorine atoms which now also share 8 electrons in its outershell. However as there are only 3 bonding pairs there must be a lone pair of electrons in this molecule. As bond pairs repel each other you would expect a tetrahedral shape to the molecule with a bond angle of 109 however due to the presence of the lone pair, there is more repulsion which distorts the shape slightly and it becomes trigonal pyramidal with a bond angle of 107.

PB
Answered by Prashan B. Chemistry tutor

9990 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do amino acids change at different pH?


Why is the Harber process performed at higher temperatures rather than low?


Molecules of hydrogen chloride, HCl, and molecules of fluorine, F2, contain the same number of electrons. Hydrogen chloride boils at –85 °C and fluorine boils at –188 °C. Explain why there is a difference in the boiling points of HCl and F2.


Palladium acts as a heterogeneous catalyst in the reaction between an alkene with hydrogen by providing an alternative reaction route. Describe the stages of this reaction route. (3 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning