Find the root of the complex 3+4i

What we should know is that the root 3+4i is a complex number that looks alot like a+bi.

We can say : rt(3+4i) = a+bi (Where we dont know what a & b is..yet)

and when we square both sides (rt(3+4i))^2=(a+bi)^2 | 3+4i = (a+bi)^2

we get 3+4i = a^2+2abi-b^2

We seperate the Real and Imaginary parts to get a simultainus equation

3 = a^2-b^2

4 = 2ba

if this is solved we get a= (+-)2 and b =(+-)1

to get (+-)(2+i) <--- which is the answer

AA
Answered by Ade A. Further Mathematics tutor

3448 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.


How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning