Find the root of the complex 3+4i

What we should know is that the root 3+4i is a complex number that looks alot like a+bi.

We can say : rt(3+4i) = a+bi (Where we dont know what a & b is..yet)

and when we square both sides (rt(3+4i))^2=(a+bi)^2 | 3+4i = (a+bi)^2

we get 3+4i = a^2+2abi-b^2

We seperate the Real and Imaginary parts to get a simultainus equation

3 = a^2-b^2

4 = 2ba

if this is solved we get a= (+-)2 and b =(+-)1

to get (+-)(2+i) <--- which is the answer

AA
Answered by Ade A. Further Mathematics tutor

3366 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find the square root of a complex number?


How do I draw any graph my looking at its equation?


Express cos(4x) in terms of powers of cos(x)


Use de Moivre's theorem to calculate an expression for sin(5x) in terms of sin(x) only.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning