What provides the centripetal force on a satellite and what are the factors that determine the size of the centripetal force on the satellite

Centripetal Force = (mv^2)/r 

The centripetal force must always act towards the centre of the circle in which the satellite is travelling. Therefore it is a attractive force from the Earth and hence gravitational attraction that provides the centripetal force. 

From the above equation we can see that the centripetal force relies on three things: 

m = the mass of the satellite 

v = the velocity at which the satellite is travelling 

r = radius of the orbit (the distance between the satellite and the earth) 

So these are the factors affecting the centripetal force. 

NH
Answered by Namita H. Physics tutor

12723 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Briefly outline how a skydiver reaches terminal velocity.


A ball of mass 1kg is rolled down a hill of height 10m. At the bottom it collides with another ball of mass 5kg. What speed does the second ball move away with? You can assume the collision between the balls is elastic.


Car 1 has a of mass 1000kg and is going at 20m/s. Car 2 has the same mass as Car 1 and is stationary. If they collide and travel together as one unit in the same direction as Car 1 was going, calculate the speed of the unit after the collision.


Describe a simple experiment to determine the speed of sound in air.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning