Answers>Maths>IB>Article

Given 2x^2-3y^2=2, find the two values of dy/dx when x=5.

First solve for the exact point on the line by substituting 5 into the original equation. You should get y=+-4. 
Now implicitly differentiate the equation: 4x-6y(dy/dx)=0. Rearranging this will yield the following: dy/dx=(2x)/(3y). Because we only have one value of x, let's substitute this into the derivative first: dy/dx=10/3y. Now we can individually substitute the two y values to get the two values of dy/dx.  dy/dx = 10/12 = 5/6, dy/dx = -10/12 = -5/6 These are the two values of dy/dx when x=5. 

KU
Answered by Kalid U. Maths tutor

6975 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Take the square root of 2i


Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)


Find out the stationary points of the function f(x)=x^2*e^(-2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences