Answers>Maths>IB>Article

Given 2x^2-3y^2=2, find the two values of dy/dx when x=5.

First solve for the exact point on the line by substituting 5 into the original equation. You should get y=+-4. 
Now implicitly differentiate the equation: 4x-6y(dy/dx)=0. Rearranging this will yield the following: dy/dx=(2x)/(3y). Because we only have one value of x, let's substitute this into the derivative first: dy/dx=10/3y. Now we can individually substitute the two y values to get the two values of dy/dx.  dy/dx = 10/12 = 5/6, dy/dx = -10/12 = -5/6 These are the two values of dy/dx when x=5. 

KU
Answered by Kalid U. Maths tutor

7407 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

f(x)=(2x+1)^0.5 for x >-0.5. Find f(12) and f'(12)


How to prove that Integral S 1/(a^2+x^2) dx= 1/a arctan(x/a) + C ?


Solve (sec (x))^2 + 2tan(x) = 0


Consider the infinite geometric sequence 25 , 5 , 1 , 0.2 , ... (a) Find the common ratio. (b) Find (i) the 10th term; (ii) an expression for the nth term. (c) Find the sum of the infinite sequence.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning