How can aldehydes and ketones be distinguished?

Firstly note that in general aldehydes are more reactive than ketones. This is a result of two effects: 

1. Ketones are more sterically hindered.

2. Alkyl groups are electron donating and so reduce the partial positive charge on the carbonyl carbon. 

As a consequence of this difference in reactivity aldehydes are oxidised more easily than ketones and so, by selecting a sufficiently weak oxidising agent, we can distinguish the two functional groups by oxidising one but not the other. 

Fehling's Test

The test begins as two separate solutions - Fehling's A and Fehling's B. The first is a light blue CuSOsolution while the second is a solution of a chelate and sodium hydroxide. 

Equal volumes of the two solutions are mixed and the sample is added. The resulting solution is heated.

Aldehyde - The aldehyde is oxidised and a brick red Cu(I) oxide precipitates out,

Ketone - No reaction occurs.

The Silver Mirror Test

This test makes use of Tollen's reagent which contains the complex [Ag(NH3)2]+. It is easily made by mixing aqueous ammonia with aqueous silver nitrate. 

Aldehyde - Upon heating with Tollen's reagent solid silver metal is produced as Agis reduced to Ag.

Ketone - No reaction occurs.

GB
Answered by George B. Chemistry tutor

61434 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

An aldehyde CH3CH2CH2CHO reacts with potassium cyanide (KCN) to form a racemic mixture of two stereoisomers of CH3CH2CH2CH(OH)CN. A)Explain why a racemic mixture is formed and b)describe how you would distinguish between 2 samples of the stereoisomers


An iron-alloy nail (2.41g) is dissolved in 100cm3 acid. 10cm3 portions of this solution are titrated with KMnO4 (0.02M) and 9.80cm3 of KMnO4 was needed to react with iron solution. What % of iron by mass is in the nail?


Why is the melting point of saturated carbon chains greater than unsaturated carbon chains?


Explain how fractional distillation works.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences