How can aldehydes and ketones be distinguished?

Firstly note that in general aldehydes are more reactive than ketones. This is a result of two effects: 

1. Ketones are more sterically hindered.

2. Alkyl groups are electron donating and so reduce the partial positive charge on the carbonyl carbon. 

As a consequence of this difference in reactivity aldehydes are oxidised more easily than ketones and so, by selecting a sufficiently weak oxidising agent, we can distinguish the two functional groups by oxidising one but not the other. 

Fehling's Test

The test begins as two separate solutions - Fehling's A and Fehling's B. The first is a light blue CuSOsolution while the second is a solution of a chelate and sodium hydroxide. 

Equal volumes of the two solutions are mixed and the sample is added. The resulting solution is heated.

Aldehyde - The aldehyde is oxidised and a brick red Cu(I) oxide precipitates out,

Ketone - No reaction occurs.

The Silver Mirror Test

This test makes use of Tollen's reagent which contains the complex [Ag(NH3)2]+. It is easily made by mixing aqueous ammonia with aqueous silver nitrate. 

Aldehyde - Upon heating with Tollen's reagent solid silver metal is produced as Agis reduced to Ag.

Ketone - No reaction occurs.

GB
Answered by George B. Chemistry tutor

62877 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain how you can prove that C6H6 does not form 1,3,5-Cyclohexatriene but forms Benzene


How do I predict the shape of a molecule?


PharmaPlus, a drug developer, is required by law to carry out clinical trials on the novel drug ‘AccuPreasure’. AccuPreasure is to be marketed for control of high blood pressure. Give three questions that clinical trials are designed to answer.


What's added to Ethanoyl Chloride to make Methyl Ethanoate? Draw out the mechanism for this reaction. Why is this preferred to esterification?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning