Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.

The first eigenvalue is 3, whose corresponding eigenvector is (1, 1), and the second eigenvalue is 2, whose corresponding eigenvector is (3, 4). In diagonal form, A = PDP^-1, where P = [[1, 3], [1, 4]] and D = [[3, 0], [0, 2]].

MU
Answered by Michael U. Further Mathematics tutor

2681 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find all the cube roots of 1


Show that the square of any odd integer is of the form (8k+1)


Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.


Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences