How to calculate acidic buffer solution pH, and how do they behave?

Example: Calculate the pH of a buffer solution which contains the weak monoprotic acid, propanoic acid (CH3CH2COOH), in concentration 0.1 moldm-3 and sodium propanoate in concentration 0.05 moldm-3. Ka of propanoic acid is 1.26×10-5 moldm-3. What happens when an acid is added to the solution? What happens when a base is added? This is an example of an acidic buffer solution, consisting of an acid (propanoic acid) and one of its salts (sodium propanoate). This gives the solution plenty of the acid (propanoic acid) and its anion (CH3CH2COO-). Propanoic acid is a weak acid, so position of equilibrium for its dissociation lies well to the left. Adding propanoate ions (given from sodium propanoate) pushes this further left according to Le Chatelier's Principle. An assumption can therefore be made that [CH3CH2COO-]=[added sodium propanoate]. A buffer solution system works to minimalise any change to the pH. If an acid is added, that means that there is an influx of protons. This pushes the equilibrium to the left to produce propanoic acid, by reacting the protons with the reservoir of propanoate ions. If a base is added, the added OH- ions can be dealt with in two ways: They can react with propanoic acid to form propanoate ions and water, or react with protons to form water. As the proton concentration would drop, the equilibrium shifts to the right, dissociating more propanoic acid to upkeep proton concentration and therefore pH.

KH
Answered by Kareem H. Chemistry tutor

22557 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Describe the reasons why the rates of strontium and barium with water is different


When vaporised, isotopes of an element can be separated in a mass spectrometer. Name the three processes that occur in a mass spectrometer before the vaporised isotopes can be detected. State how each process is achieved. (6 marks)


How do mass spectrometers work?


Explain in terms of bonding and structure the properties of graphite given that it is a good conductor, soft and has a very high melting point


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning