How to calculate temperature of expanded ideal gas.

By definition an ideal gas in a closed follows the relationship of PV=nRT, or PV/T = constant

This means that Pressure * Volume/ Temperature will be the same at the start and end of the process. 

So P1V1/T1=P2V2/T2

Assuming that we have a gas at a temperature of 300k (T1) in a piston initially at 1m(V1) which is then expanded at constant pressure (isobaric) to 2m3.(V2) What would be the final temperature?

As Pressure is the same at the start and end of the process, we can ignore the pressure terms, giving

V1/T1=V2/T2

Rearranging the equation to give a solution to T2

T2=V1*T1/V2

Thus filling in the terms we already know, gives

T2=1*300/2

T2=150k

IC
Answered by Iain C. Physics tutor

8092 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Explain the difference between a real and a virtual image.


Why is the redshift important?


A skydiver is at a height of 10,000 m. Assuming no air resistance, how fast is the skydiver travelling at 9,990 m above the ground?


Sophia (mass 47Kg) is travelling to the right with a velocity of 7.2m/s and ​Neesha (mass 68Kg) is travelling to the left with a velocity 4.8m/s. When ​they meet, they hold hands and travel off together. Give their final ​velocity and direction


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning