How to calculate temperature of expanded ideal gas.

By definition an ideal gas in a closed follows the relationship of PV=nRT, or PV/T = constant

This means that Pressure * Volume/ Temperature will be the same at the start and end of the process. 

So P1V1/T1=P2V2/T2

Assuming that we have a gas at a temperature of 300k (T1) in a piston initially at 1m(V1) which is then expanded at constant pressure (isobaric) to 2m3.(V2) What would be the final temperature?

As Pressure is the same at the start and end of the process, we can ignore the pressure terms, giving

V1/T1=V2/T2

Rearranging the equation to give a solution to T2

T2=V1*T1/V2

Thus filling in the terms we already know, gives

T2=1*300/2

T2=150k

IC
Answered by Iain C. Physics tutor

7747 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

The time taken for a wave to pass a point is 2.5 seconds. What is the frequency of the wave?


State one advantage and one disadvantage of using a CT scanner, compared with ultrasound scanning, for forming images of the inside of the human body. (2 Marks)


What are the 3 main types of radiation?


The maximum speed this cyclist can travel on a level road is 14 m/s. How does cycling uphill affect the maximum speed of this cyclist? Explain your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning