How to calculate temperature of expanded ideal gas.

By definition an ideal gas in a closed follows the relationship of PV=nRT, or PV/T = constant

This means that Pressure * Volume/ Temperature will be the same at the start and end of the process. 

So P1V1/T1=P2V2/T2

Assuming that we have a gas at a temperature of 300k (T1) in a piston initially at 1m(V1) which is then expanded at constant pressure (isobaric) to 2m3.(V2) What would be the final temperature?

As Pressure is the same at the start and end of the process, we can ignore the pressure terms, giving

V1/T1=V2/T2

Rearranging the equation to give a solution to T2

T2=V1*T1/V2

Thus filling in the terms we already know, gives

T2=1*300/2

T2=150k

IC
Answered by Iain C. Physics tutor

7381 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Why does voltage increase (for a constant current) if temperature increases?


A bowling ball is thrown into the alley, having velocity of 3 ms^-1 at the start of the bowling alley. It decelerates at a constant rate, before hitting the skittles at 2 ms^-1 after 4 s A) calculate the acceleration of the ball.


In 5V circuit has two 2 Ohm resistors in parallel, what is the current passing through each resistor?


A 2 kW electric fire is switched on for 30 minutes. How many Units of electricity does it use?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences