Answers>Maths>IB>Article

Let Sn be the sum of the first n terms of the arithmetic series 2 + 4 + 6 + ... i) Find S4

Firstly look for key terms in the question, identifying that we are going to be finding the sum of n terms, and it is an arithmetic series. This allows us to know which equations to look for in our formula booklet, the following equations are relevant: Sn = (n/2)(2u1 + d(n-1)) = n/2(u1 + un) un = u1 + d(n-1) There are two ways of solving this problem, but first it is done by identifying the first term and the difference between the terms. In this case u1 = 2, because it is the first term, and the difference between 2 and 4 is 2, which is the same difference between 4 and 6 which means that d = 2. Since we are trying to find the sum of all terms up to the 4th term then n=4. If we put these defined terms into the equation then we can derive the answer. Sn = (n/2)(2u1 + d(n-1))   S4 = (4/2) (2 x 2 + 2(4-1))  S4 = 2 (4 + (2 x 3)) S4 = 20

SL
Answered by Sydney L. Maths tutor

6031 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Show that the following system of equations has an infinite number of solutions. x+y+2z = -2; 3x-y+14z=6; x+2y=-5


Can you explain the approach to solving IB maths induction questions?


In Topic 5 (Statistics and Probability) what is the difference between mutually exclusive events and independent events?


The function f has a local extreme at point (1,4). If f''(x)=3x^2+2x, then find f(0)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning