Answers>Maths>IB>Article

Let Sn be the sum of the first n terms of the arithmetic series 2 + 4 + 6 + ... i) Find S4

Firstly look for key terms in the question, identifying that we are going to be finding the sum of n terms, and it is an arithmetic series. This allows us to know which equations to look for in our formula booklet, the following equations are relevant: Sn = (n/2)(2u1 + d(n-1)) = n/2(u1 + un) un = u1 + d(n-1) There are two ways of solving this problem, but first it is done by identifying the first term and the difference between the terms. In this case u1 = 2, because it is the first term, and the difference between 2 and 4 is 2, which is the same difference between 4 and 6 which means that d = 2. Since we are trying to find the sum of all terms up to the 4th term then n=4. If we put these defined terms into the equation then we can derive the answer. Sn = (n/2)(2u1 + d(n-1))   S4 = (4/2) (2 x 2 + 2(4-1))  S4 = 2 (4 + (2 x 3)) S4 = 20

SL
Answered by Sydney L. Maths tutor

6234 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.


Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256


How do I derive the indefinite integral of sine?


What is proof by induction and how do I employ it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning