Show that cosh^2(x)-sinh^2(x)=1

In exponential form, sinh^2(x)=1/4(e^2x+e^-2x-2), cosh^2(x)=1/4(e^2x+e^-2x+2). Therefore cosh^2(x)-sinh^2(x)=1/4(2-(-2))=4/4=1, as required. 

TD
Answered by Tutor80806 D. Further Mathematics tutor

6866 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


Find the eigenvalues and eigenvectors of the matrix M , where M{2,2} = (1/2 2/3 ; 1/2 1/3) Hence express M in the form PDP^-1 where D is a diagonal matrix.


What are the conditions required for the poisson distribution?


Prove by induction that 2^(6n)+3^(2n-2) is divsible by 5. (AS Further pure)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences