Show that cosh^2(x)-sinh^2(x)=1

In exponential form, sinh^2(x)=1/4(e^2x+e^-2x-2), cosh^2(x)=1/4(e^2x+e^-2x+2). Therefore cosh^2(x)-sinh^2(x)=1/4(2-(-2))=4/4=1, as required. 

TD
Answered by Tutor80806 D. Further Mathematics tutor

7105 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


What is the complex conjugate?


Find the set of values for which: 3/(x+3) >(x-4)/x


Prove by induction that, for all integers n >=1 , ∑(from r=1 to n) r(2r−1)(3r−1)=(n/6)(n+1)(9n^2 -n−2). Assume that 9(k+1)^2 -(k+1)-2=9k^2 +17k+6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences