Answers>Maths>IB>Article

Three girls and four boys are seated randomly on a straight bench. What is the probability that the boys sit together and the girls sit together.

To calculate the desired probability we need to calculate the number n of arrangements of the kids such that the girls sit together and the bous sit together and then calculate the total number m of arrangements. Then the probability is n/m.

Since boys can sit to the left or to the right from the girls we have 2 possibilities of arranging full groups. 4 boys in a group can be seated in 4!=24 different ways. The group of 3 girls can be seated in 3!=6 different ways. Hence the number of arrangements in which the two groups are separated is 2246=288.
On the other hand there are 7!=5040 different arrangements of a group of 7 people. Therefore the probability of the two groups being separated is 288/5040=2/35.

JW
Answered by Jakub W. Maths tutor

10974 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Write down the expansion of (cosx + isinx)^3. Hence, by using De Moivre's theorem, find cos3x in terms of powers of cosx.


Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


What are the key elements to include in your Math assignment?


(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences