Answers>Maths>IB>Article

Consider the arithmetic sequence 5,7,9,11, …. Derive a formula for (i) the nth term and (ii) the sum to n terms. (iii) Hence find the sum of the first 20 terms.

We can easily identify the first term (5)

The common difference can be found by subtracting the nth term from the (n+1)th term

7-5=9-7=11-9=2

Therefore:

U1=5 and d=2

The IB formula booklet provides the general formula for the nth term and the sum to n terms. Substitute the previously found values into these formulae.

Un=U1 + (n-1)d

Sn=n/2(2u1+(n-1)d)

(i)

Un=U1 + (n-1)d

Substitute in values of u1 and d

Un=5+(n-1)2

Simplify the result by expanding brackets

Un=5+2n-2

Un=2n+3

(ii)

Sn=n/2(2u1+(n-1)d)

Substitute in values of u1 and d

Sn=n/2(2(5)+(n-1)2)

Sn=n/2(10+2n-2)

Sn=5n+n2-n

Sn=4n+n2

(iii)

Substitute n=20 into the formula from (ii)

Sn=4n+n2

Sn=4(20)+(20)2

Solve

Sn=80+400=480

JN
Answered by Jan Niklas F. Maths tutor

7281 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Consider the infinite geometric sequence 25 , 5 , 1 , 0.2 , ... (a) Find the common ratio. (b) Find (i) the 10th term; (ii) an expression for the nth term. (c) Find the sum of the infinite sequence.


Solve (sec (x))^2 + 2tan(x) = 0


How should I approach a proof by induction question?


Find the Cartesian equation of plane Π containing the points A(6 , 2 , 1) and B(3, -1, 1) and perpendicular to the plane Π2 (x + 2y - z - 6 = 0).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning