Answers>Maths>IB>Article

Consider the arithmetic sequence 5,7,9,11, …. Derive a formula for (i) the nth term and (ii) the sum to n terms. (iii) Hence find the sum of the first 20 terms.

We can easily identify the first term (5)

The common difference can be found by subtracting the nth term from the (n+1)th term

7-5=9-7=11-9=2

Therefore:

U1=5 and d=2

The IB formula booklet provides the general formula for the nth term and the sum to n terms. Substitute the previously found values into these formulae.

Un=U1 + (n-1)d

Sn=n/2(2u1+(n-1)d)

(i)

Un=U1 + (n-1)d

Substitute in values of u1 and d

Un=5+(n-1)2

Simplify the result by expanding brackets

Un=5+2n-2

Un=2n+3

(ii)

Sn=n/2(2u1+(n-1)d)

Substitute in values of u1 and d

Sn=n/2(2(5)+(n-1)2)

Sn=n/2(10+2n-2)

Sn=5n+n2-n

Sn=4n+n2

(iii)

Substitute n=20 into the formula from (ii)

Sn=4n+n2

Sn=4(20)+(20)2

Solve

Sn=80+400=480

JN
Answered by Jan Niklas F. Maths tutor

7272 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

log_10⁡((1/(2√2))*(p+2q))=(1/2)(log_10⁡p+log_10⁡q),p,q>0,find p in terms of q.


Find the coordinates of the minimum or maximum of the function f(x) = 3x^2 -2x +9 and determine if it's a minimum or maximum.


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


Determine the integral: ∫5x^4dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning