How do you solve hard integration questions using information you know

lets try a few integrations. what is integral of dx/(1+x)? You can see that it is in the form of f'(x)/f(x) so it is ln[f(x)] right? now what about integral of (e^x/(1+e^x))dx that is also in the form of f'(x)/f(x) right? so the answer follows and what would that be? ln(e^x +1)+c*. Now this is true and it follows but another way to think about it is that de^x/dx = e^x so if you have e^xdx we can write de^x in its place and that works too. lets see it in practice. integral of 1/(1+x^2)dx = arctan(x)+c, so if we have integral of e^x/(1+e^2x)dx = integral 1/(1+(e^x)^2)de^x = arctan(e^x)+c [that is we assume x=e^x]. can you see how it is used in integral of cos(x)(sin(x))^ndx? how do you think we will go about integral of 1/(1+e^x)dx?

DA
Answered by Desmond A. MAT tutor

1495 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

If a_(n+1) = a_(n) / a_(n-1), find a_2017


How many distinct real roots does the equation x^3 − 30x^2 + 108x − 104 = 0 have?


Let f(x) = 2x^3 − kx^2 + 2x − k. For what values of the real number k does the graph y = f(x) have two distinct real stationary points? (MAT 2017 q1.A)


How do you differentiate ln(f(x))? Tricks like these occur commonly in STEP questions (including one I was looking at earlier today).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences