Answers>Maths>IB>Article

How does Euclid's algorithm give solutions to equations?

Euclid's algorithm is really useful to be able to, firstly, see if two numbers are co-prime, in other words to see if they share any common factors, but also to find solutions to equations. Say we have two integers that satisfy: 32x + 24y = 16 Then we use Euclid's algorithm to first calculate the greatest common divisor (gcd) of 32 and 24. Hopefully, the method of this is ok? So we get gcd(32,24) = 8. Now, we can reverse what we did to get our solutions to the equation above. But don't forget that we had the equation equal to 16, not 8. This is often used in exams to trip up students, so look out for that.

AR
Answered by Abby R. Maths tutor

1928 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Let Sn be the sum of the first n terms of the arithmetic series 2+4+6+... . Find (i) S4 ; (ii) S100 .


The normal to the curve x*(e^-y) + e^y = 1 + x, at the point (c,lnc), has a y-intercept c^2 + 1. Determine the value of c.


The velocity of a particle is given by the equation v= 4t+cos4t where t is the time in seconds and v is the velocity in m s ^-1. Find the time t when the particle is no longer accelerating for the interval 0≤t≤2.


What is the area enclosed by the functions x^2 and sqrt(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning