If z=4+i, what is 1/z? (in the form a+bi)

1/z =1/(4+i) Multiply both top and bottom by the complex conjugate, z* = 4 - i, 1/z = (4-i)/((4+i)(4-i)) = (4-i)/(16+4i-4i-i2) = (4-i)/17 ans: 4/17 - i/17

RH
Answered by Rachel H. Further Mathematics tutor

3154 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A=(1,a;0,1/2) B=(1,-1;0,2) AB=I, calculate the value of a.


Given y=x^3-x^2+6x-1, use diffferentiation to find the gradient of the normal at (1,5).


How do I know I can multiply two matrices and if so, how do I do it?


Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning