If z=4+i, what is 1/z? (in the form a+bi)

1/z =1/(4+i) Multiply both top and bottom by the complex conjugate, z* = 4 - i, 1/z = (4-i)/((4+i)(4-i)) = (4-i)/(16+4i-4i-i2) = (4-i)/17 ans: 4/17 - i/17

RH
Answered by Rachel H. Further Mathematics tutor

2633 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The curve C has equation f(x) = 4(x^1.5) + 48/(x^0.5) - 8^0.5 for x > 0. (a) Find the exact coordinates of the stationary point of C. (b) Determine whether the stationary point is a maximum or minimum.


Solving equations with unknown in both sides


f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?


Find and describe the stationary points of the curve y = x^2 + 2x - 8


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences