If z=4+i, what is 1/z? (in the form a+bi)

1/z =1/(4+i) Multiply both top and bottom by the complex conjugate, z* = 4 - i, 1/z = (4-i)/((4+i)(4-i)) = (4-i)/(16+4i-4i-i2) = (4-i)/17 ans: 4/17 - i/17

RH
Answered by Rachel H. Further Mathematics tutor

2705 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.


A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


A=(1,a;0,1/2) B=(1,-1;0,2) AB=I, calculate the value of a.


To differentiate a simple equation: y= 4x^3 + 7x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences