How to calculate the integral of sec(x)?

First of all, multiply secx by (secx+tanx)/(secx+tanx). Use the substitution u=secx+tanx, so that du=(secxtanx+sec2x) dx and then substitute both terms. Calculate the integral of the du/u arriving at ln|u|+C. Then put in the substituted function of x. The result is ln|secx+tanx|+C.

CK
Answered by Cezary K. Further Mathematics tutor

9089 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that y = arcsinh(x), show that y=ln(x+ sqrt(x^2 + 1) )


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


Find the general solution of y'' - 3y' + 2y = 2e^x


Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning