The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?

Vector Equation So we know it contains three points so we can find two lines in the plane. 1) (1,2,3) + A((0,1,2) - (1,2,3)) = (1,2,3) + A(-1,-1,-1) 2) (1,2,3) + B((2,3,0) - (1,2,3)) = (1,2,3) + B(1,1,-3) Generally the vector form of a plane will be in the form of a point on the plane and two different direction vectors, so we can deduce from above that one possible plane equation with these 3 points is (1,2,3) + A(-1,-1,-1) + B(1,1,-3) Cartesian Equation So first lets find the normal to the plane. We do this by doing the cross product of the two direction vectors in the vector equation (-1,-1,-1)X(1,1,-3) = (4,-4,0) If we take out a factor of four due to it being a direction vector we end up wih the normal being (1,-1,0) so the general form of the cartesian is (a,b,c).(x,y,z)=d or ax+by+cz=d where (a,b,c) is the normal to the plane and d is the product of a point on the plane replacing (x,y,z) So we can write x - y =d putting in the poiny (1,2,3) gives the full cartesian equation x - y = -1

OO
Answered by Oliver O. Further Mathematics tutor

5798 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.


Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x


Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles


Differentiate arcsin(2x) using the fact that 2x=sin(y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning