Derive the kinetic theory equation pV=Nm/3(crms2) for an ideal gas.

Assume a point molecule in a container with dimensions lx by ly by lz travelling at velocity c1 given by c12=u12+v12+w12​​​​​​ where u, v, w are the x, y, and z velocity components.

>each impact of the molecule with the ly by lz container face reverses the x component of the velocity, so the change in momentum dp is given by dp=(-mu1)-mu1=-2mu1

>the time between successive impacts t is given by t=2lx/u1

>using Newton's second law, the force F1 on a molecule is given by F1=-2mu1/(2lx/u1)=-mu12/lx

>using Newton's third law, the force Fs on the face surface is given by Fs=mu12/lx

>the pressure p1 exerted by the molecule on the impact face is given by p1=Fs/area of impact face=mu12/lxlylz=mu12/V where V is the container volume

>the total pressure p exerted by N molecules on the impact face is given by p=mu12/V + mu22/V + mu32/V +...+ mun2/V=m/V(u12 + u22 + u32+...+ un2)=Nm/V(u2) where u is the mean u component speed

>the motion of molecules is random meaning there is no preferred direction so p=Nm/3V(u2+v2+w2)=Nm/3V(crms2) where crms is the root mean square speed given by crms2=1/N(c12+c22​​​​​​​+c32 +…+cn2)

MV
Answered by Maryna V. Physics tutor

8048 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do you explain why puddles evaporate on cold days ?


What is the difference between internal energy, temperature, and heat?


A boy (25kg) and a girl (20kg) are playing on a see-saw which is 4m long. If the boy sits 1m from the centre on the left side and the girl 2m from the centre on the other, which direction will the see-saw will rotate around its centre?


2 Capacitors (c1 = 500mf) and (c2=300mf), are connected in parallel to a 10v d.c supply. Calculate the total capacitance of the circuit, and hence the total energy stored in the capacitors.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning