You are asked to find the Young modulus for a metal using a sample of wire. *(a) Describe the apparatus you would use, the measurements you would take and explain how you would use them to determine the Young modulus for the metal.

Apparatus: The wire is secured by a clamp and clamp stand A hanging mass is attached to the end of it, where the mass hung can be changed A Vernier scale or ruler may be attached to the apparatus to measure the distance the wire has extended Measurements: The initial length of the wire can be measured using a ruler (or metre rule) The wire diameter can be measured with a micrometer The mass attached can be measured using weighing scales (or by using known masses) The extension can be measured using a Vernier scale (or ruler) for a range of different masses Calculating Young’s Modulus: E= stress/strain                     So E is the gradient of a stress-strain graphStress=F/A=mg/πr2 Strain= extension/initial length            Readings for extension can therefore be taken for different masses.   The stress and strain can be calculated and plotted on a graph, and E can be measured from its gradient.

RH
Answered by Robert H. Physics tutor

7997 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is dropped from rest from a window 3m above ground height. How long will it take the ball to hit the ground? (You may assume air resistance on the ball is negligible.)


The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.


A student heats a bar of chocolate in the microwave for one minute. When they remove the bar they observe that there are patches of melted chocolate with unmelted chocolate between them. Suggest the mechanism of how this happens.


A wire has length l, cross-sectional area a, resistivity p and resistance R. It is compressed to a third of its original length but its volume and resistivity are constant. Show its new resistance is R/9.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning