You are asked to find the Young modulus for a metal using a sample of wire. *(a) Describe the apparatus you would use, the measurements you would take and explain how you would use them to determine the Young modulus for the metal.

Apparatus: The wire is secured by a clamp and clamp stand A hanging mass is attached to the end of it, where the mass hung can be changed A Vernier scale or ruler may be attached to the apparatus to measure the distance the wire has extended Measurements: The initial length of the wire can be measured using a ruler (or metre rule) The wire diameter can be measured with a micrometer The mass attached can be measured using weighing scales (or by using known masses) The extension can be measured using a Vernier scale (or ruler) for a range of different masses Calculating Young’s Modulus: E= stress/strain                     So E is the gradient of a stress-strain graphStress=F/A=mg/πr2 Strain= extension/initial length            Readings for extension can therefore be taken for different masses.   The stress and strain can be calculated and plotted on a graph, and E can be measured from its gradient.

RH
Answered by Robert H. Physics tutor

7892 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the motion of a skydiver from leaving the aircraft to reaching terminal velocity


Explain the advantages of a reflecting telescope compared to a refracting telescope


An electron is emitted from a cathode in an electron gun, with a potential difference of 150kV. Find the velocity of the electron after it is accelerated and find the De Broglie wavelength.


A Positron has the same mass, but opposite charge to an electron. A Positron and electron are orbiting around each other separated by 1μm, in a stable circular orbit about their centre of mass, as a result of electrostatic attraction. Calculate the period


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning