Using Newton's law of gravitation, derive a suitable formula for the escape velocity of an object at Earth's surface.

Newton's law of gravitation is;
F = GMm/(r2)
Where G is the Universal Gravitational constant, M is the mass of Earth, m is the mass of the object and r is the radius of Earth (no values are needed for this as we are simply deriving a formula, not working out a solution)
We can equate this force to the centripetal force experienced by an object at Earth's surface. This is because the centripetal force is what keeps an object in circular motion, acting towards the centre of the circle. It can be thought of as the force pulling us in toward the centre of the Earth, which we know is gravity so therefore is the same as the force given in Newtons law.
F = m(v2)/r (centripetal force)
Therefore;
GMm/(r2) = m(v2)/r
Dividing by m and multiplying by r
GM/r = (v2)
v = (GM/r)1/2where v is the escape velocity

CM
Answered by Charlie M. Physics tutor

5838 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

what is the centripetal force?


A ball is dropped from rest at a height of 2 metres. Assuming acceleration due to gravity (g) is 10m/s^2 calculate the velocity of the ball just before it hits the floor.


Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.


A gold leaf electroscope with a zinc plate top is charged by briefly connecting it to the negative electrode of a high-voltage supply. Explain how the gold leaf will appear and how the leaf can be caused to drop again.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning