Answers>Maths>IB>Article

Given the parametric equations x = lnt+t and y = sint calculate d^2y/dx^2

First we can write d2y/dx2 as (d/dx)(dy/dx). Now we need to find dy/dx. This can be further written as (dy/dt)(dt/dx). These derivatives can be obtained from the given parametric equations:
 dx/dt = 1/t + 1, hence dt/dx = 1/(1/t+1) = t/(1+t)
dy/dt = cost,
Therefore combining these to we obtain
dy/dx = tcost/(1+t).
Now goind back to what we wrote at the beginning - d2y/dx2 as (d/dx)(dy/dx) - we can write it as (dt/dx)(d/dx)(dy/dx) and this is equal to (dt/dx)(d/dt)[tcost/(t+1)].
First let's compute (d/dt)[tcost/(t+1)]:
Using the product and quotient rule (if we have to functions say f and g and their derivatives f' and g' product rule says that (fg)' = f'g + fg' and quotient rule says that (f/g) = (f'g-fg')/g2) we can write:
[tcost/(t+1)]' = (cost-tsint)(t+1)-tcost)/(t+1)2 = (cost-t2sint-tsint)/(t+1)2
Going bakc to the formula for the second derivative we need to multiply our result by dt/dx, therefore
  (cost-t2sint-tsint)/(t+1)2 (dt/dx) = (cost-t2sint-tsint)/(t+1)2 * [t/(1+t)] = t(cost-t2sint-tsint)/(t+1)3

Final answer: d2y/dx2 = t(cost-t2sint-tsint)/(t+1)3

AR
Answered by Agnieszka R. Maths tutor

4002 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Given f(x)=(x^3-7)*(x+4)^5, find the term x^3 of f(x).


Find the area under the curve of f(x)=4x/(x^2+1) form x = 0 to x = 2.


dy/dx = 10exp(2x) - 4; when x = 0, y = 6. Find the value of y when x = 2.


What does a derivative mean and why does setting it equal to zero allow us to find the minima/maxima of a function


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning